AP Acids and Bases 8 -- TITRATIONS

A sample of HA, a weak, monoprotic acid, weighs 1.22 g . It is dissolved in enough water to make 20.0 mL of solution and titrated with 0.100 M KOH solution. After 20.0 mL of titrant was added, the pH of the solution was found to be 5.00 . The experimenter found that 40.0 mL of titrant was needed to reach the equivalence point.
a) What is K_{a} for HA? $\left\{1.0 \times 10^{-5}\right\}$

$$
\mathrm{pH}=\mathrm{pK}_{\mathrm{a}} \text { at } 1 / 2 \text { equivalence point }=5.00 ; \mathrm{K}_{\mathrm{a}}=10^{-\mathrm{pKa}}=10^{-5.00}=1.0 \times 10^{-5}
$$

b) How many moles of HA are present in the initial sample? \{0.0040 moles \}

$$
\begin{array}{l|l}
40.0 \mathrm{~mL} & 1 \mathrm{n} \mathrm{~A}^{-} \\
\hline & 1 \mathrm{n} \mathrm{HA}
\end{array}=0.00400 \mathrm{n} \mathrm{KOH}
$$

c) What is the volume of the solution at the equivalence point? $\{60.0 \mathrm{~mL}\}$
$20.0 \mathrm{~mL}+40.0 \mathrm{~mL}$
d) What is the molarity of A^{-}at the equivalence point? $\{0.0667 \mathrm{M}\}$

0.00400 n HA	$1 \mathrm{n} \mathrm{A}^{-}$
	1 n HA

e) What is the pH of the solution at the equivalence point?

| A^{-} |
| :---: | :---: | :---: | :---: |
0.0667	$+\mathrm{H}_{2} \mathrm{O} \leftrightarrows$	HA		
0				
-X				
	+X		OH^{-}	
:---:	:---:			
0.0667				

$\mathrm{K}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}}}=\frac{1 \times 10^{-14}}{1.0 \times 10^{-5}}=1.0 \times 10^{-9}$
$\mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HA}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{A}^{-}\right]}=1.0 \times 10^{-9} \quad \mathrm{~K}_{\mathrm{b}}=\frac{[\mathrm{x}][\mathrm{x}]}{[0.0667]}=1.0 \times 10^{-9}$

$$
\mathrm{x}=8.16 \times 10^{-6}
$$

$\mathrm{pOH}=-\log \left(8.16 \times 10^{-6}\right)=5.09 \quad \mathrm{pH}=14.00-5.09=8.91$
f) What is the molar mass of HA? $\{305 \mathrm{~g} / \mathrm{mole}\}$
$\mathrm{MW}=\mathrm{g} / \mathrm{n}=1.22 \mathrm{~g} / 0.00400 \mathrm{n}=305 \mathrm{~g}$

