

Mixed Gas Laws Worksheet

1) How many moles of gas occupy 98 L at a pressure of 2.8 atmospheres and a temperature of 292 K?

PV=NPT

2) If 5.0 moles of O_2 and 3.0 moles of N_2 are placed in a 30.0 L tank at a temperature of 25° C, what will the pressure of the resulting mixture of gases be?

3) A balloon is filled with 35.0 L of helium in the morning when the temperature is 20.0° C. By noon the temperature has risen to 45.0° C. What is the new volume of the balloon?

$$\frac{35.0L}{293K} = \frac{V_2}{318}$$

$$V_2 = 38.0L$$

4) A 35 L tank of oxygen is at 315 K with an internal pressure of 190 atmospheres. How many moles of gas does the tank contain?

$$(190)(35) = n(0.0821)(315)$$

 $n = 260mol$

Everett Community College Tutoring Center Student Support Services Program 5) A balloon that can hold 85 L of air is inflated with 3.5 moles of gas at a pressure of 1.0 atmosphere. What is the temperature in °C of the balloon?

6) CaCO₃ decomposes at 1200° C to form CO₂ gas and CaO. If 25 L of CO₂ are collected at 1200° C, what will the volume of this gas be after it cools to 25° C?

$$\frac{25L}{1473K} = \frac{V_2}{298}$$

$$V_2 = 5.1L$$

7) A helium balloon with an internal pressure of 1.00 atm and a volume of $4.50 \, \text{L}$ at $20.0^{\circ} \, \text{C}$ is released. What volume will the balloon occupy at an altitude where the pressure is $0.600 \, \text{L}$ atm and the temperature is $-20.0^{\circ} \, \text{C}$?

$$\frac{(1.00atm)(4.50L)}{293K} = \frac{(0.600)V}{253K}$$

$$V = 6.48L$$

8) There are 135 L of gas in a container at a temperature of 260° C. If the gas was cooled until the volume decreased to 75 L, what would the temperature of the gas be?

$$\frac{135L}{533k} = \frac{75L}{T_2}$$

$$T_2 = 296k - 273k = 23°C$$

Everett Community College Tutoring Center Student Support Services Program

A 75 L container holds 62 moles of gas at a temperature of 215° C. What is the pressure in 9)

P(75L) = (62mu)(0.0821)(488K) P = 33atm

10) 6.0 L of gas in a piston at a pressure of 1.0 atm are compressed until the volume is 3.5 L. What is the new pressure inside the piston?

 $(1.0 \text{ atm})(6.0L) = P_2(3.5L)$ $P_2 = 1.7 \text{ atm}$

A gas canister can tolerate internal pressures up to 210 atmospheres. If a 2.0 L canister 11) holding 3.5 moles of gas is heated to 1350° C, will the canister explode?

P (2.0L) = (3.5mul) (0.0821) (1623K)

P= 230 atm

YS, it will explode ble the

internal pressure of 230 atm excera

the capacity of the canister.

The initial volume of a gas at a pressure of 3.2 atm is 2.9 L. What will the volume be if the

pressure is increased to 40 atm?

12) pressure is increased to 4.0 atm?

 $(3.2 \text{ atm}) (2.9 \text{L}) = (4.0 \text{ atm}) V_2$ $V_2 = 2.3 \text{ atm}$

Everett Community College Tutoring Center Student Support Services Program

13) An airtight container with a volume of 4.25 x 10⁴ L, an internal pressure of 1.00 atm, and an internal temperature of 15.0° C is washed off the deck of a ship and sinks to a depth where the pressure is 175 atm and the temperature is 3.00° C. What will the volume of the gas inside be when the container breaks under the pressure at this depth?

$$(1.00 \text{ atm}) (4.25 \times 10^{4} \text{L}) = (175 \text{ atm}) V_{2}$$

$$288 \text{K}$$

$$V_{2} = 233 \text{L}$$

Two flasks are connected with a stopcock. Flask #1 has a volume of 2.5 L and contains 14) oxygen gas at a pressure of 0.70 atm. Flask #2 has a volume of 3.8 L and contains hydrogen gas at a pressure of 1.25 atm. When the stopcock between the two flasks is opened and the gases are allowed to mix, what will the resulting pressure of the gas

Since the volume will everese the pressure of each will 2: $(0.70 \text{ atm})(2.5L) = (6.3 \text{ atm})(P_2)$ H₂: $(1.25 \text{ atm})(3.81) = (6.3L)P_2$ $P_{02} = 0.28 \text{ atm}$

PT = 0.28atm+ 0.75atm

 $T_{T} = 1.0 atm$ A weather balloon has a volume of 35 L at sea level (1.0 atm). After the balloon is 15) released it rises to where the air pressure is 0.75 atm. What will the new volume of the weather balloon be?

(1.0atm) (35L) = (0.75atm) V2

			To the second
		Name Pe	eriod
		Gas Laws Review	Linh
	1.	Under what conditions do gases usually not show "ideal gas" behavior? Low temp & when they are Those together they have stroken attache forces.	Pres sluve
	2.	Convert 788 mm Hg to atm.	
	3.	788 mm Hg latm = (1.04atm) Convert 135 K to degrees Celsius.	
		135K-273 =	. 05
	4.	Calculate the mass of 1.00 L of carbon monoxide (CO) at STP. (1 atm) (1 L) = n (0.0821)(273) $n = 0.0446 \text{ mol} (28.019 = 1.259)$	1.002/1/ 1.002/1/ 1.004/16
	5.	Calculate the pressure from 8.63 moles of O_2 at 85°C in a 2.38 L flask. P(2.38L) = (8.63 mol) (0.0821)(358 K)	010944
		P=106atm => (110atm)	
	6.	A gas tank is initially at 2.5 atm. It is heated from 280 K to 340 K at constant volume. What is the pressure? $\frac{2.5 \text{ atm}}{280 \text{K}} = \frac{P_2}{340 \text{K}}$	new
	7.	A 12.0 L sample of nitrogen has a pressure of 540 kPa at 150 °C. The gas is compressed to 1.20 L a temperature is lowered to 50 °C. What is the new pressure? $ \frac{(540kPa)(12.0L)}{423k} = \frac{P_2(1.20L)}{323k} = \frac{P_2 + 100}{423k} $	
d=	8. PI	Calculate the density of helium that is required to inflate a balloon to 4.0 L tank at 305 K and 2.5 atm $ \frac{4.00\%}{1.00\%} $ $ \frac{1}{1.00\%} $ $\frac{1}{1.00\%} $ $\frac{1}{1.00\%} $ $\frac{1}{1.00\%} $ $\frac{1}{1.00\%} $ $\frac{1}{1.00\%} $	1?
	9.	2. Compare the diffusion rates of helium and radon.	
		Ratethe = \frac{222}{4} He diffuses 7.4 times RateRn Faster than Rn	

15. What are the five main parts of the Kinetic Molecular Theory?

bit.14/229DEDI

Intermolecular Forces Worksheet

Answers are on page 3 & 4. Do the problems on your own BEFORE looking at the answers.

1. Predict the molecular shape of each of the following:

; ii:	a. H ₂ S	_H-'S'-I+ bent	O. = S-0;
:i-c-ci	b. CCl ₄	tetrahedral	,,,
(1)	c. SO ₂	bent	:23:
	d. BrF	_ linear :Br-F:	0,61 - 0
	d. PCl ₅	trigonal bipyramid	in a city
		1	. (1

2. List all types of IMFs that would occur in each of the following (you should have a good enough understanding of electronegativities to answer all of these, except maybe SO₂, without look up the electronegativity numbers).

a	. CH ₃ CF ₃	dipole-dipole LD A-C-C-F
ŀ	cCl ₄	LD and a second of the second
(s. SO ₂	dipule-dipule, LD
C	l. BrF	dipule-dipule, LD
e	e. (CH ₃) ₃ N	dipole-dipole, LD = (H3
f	PCl ₅	LP CH2

3. H₂S, O₂ and CH₃OH all have comparable molecular masses. List the **dominant** type of IMF for the pure substances, then rank the strength of each compound based on IMFs within the samples.

(1 = strongest, 2 = in between, 3 = weakest).

Substance	IMF	Relative Strength
HBr	dipole-dipol	2
O ₂	LD	3
CH₃OH	HB	1

4.	Circle all of the species below that can form a hydrogen bond in its pure form			
	the other species couldn't hydrogen bond.			

KCI (CH3CH2CH2OH)

* must be bonded to N, O, F to create HBX

5. Rank the following compounds from weakest intermolecular forces to strongest. Justify your answers.

H₂S I_2 DD

 H_2O MB LD

N2, T2, H2S, H2O

LP

6. Rank the following from weakest intermolecular forces to strongest. Justify your answers.

H₂Se

H₂S

H₂Po

19 mart

(3) Increase LD w/ Increase in mass b/c larger objects have stronger attration to each other

d) Complete the following:

e) Are hydrogen bonds the same as covalent bonds between H and another element? (See Table 1).

No it's the attraction by molecules

If not, are hydrogen bonds stronger than covalent bonds? (See Table 1).

NO

Q21. Compare the boiling points of NH₃ and SbH₃ in Graph 2. SbH₃ > NH₃

- a) Which is more polar, NH₃ or SbH₃? MH₃
 b) Which can hydrogen bond, NH₃ or SbH₃? NH₃
- c) Based on polarity and hydrogen bonding, which do you expect should have the stronger intermolecular forces? $H B \longrightarrow N H_3$
- d) Which is shown in Graph 2 to have stronger intermolecular forces? Sb H3
- e) Provide an explanation. The mass of Sb is so much quester than N

Exercises

This activity is based on sections 9.6 on non-covalent interactions (intermolecular forces). Refer to these sections for additional reading. I also recommend the in-chapter exercises and problem boxes in Sec. 9.6 (p. 409-418) and Questions for Review and Thought (Chapter 9: # 54-62 (bold)

Answer key to this activity will be posted online.

Page 5 of 5