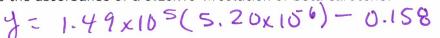
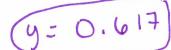
Name:	160	>	Date:	Class Pd.	

Unit 3: Quiz: Solutions, Chromatography & Beer's Law

AP Chemistry Version 1

Using the data provided below to answer the questions that follow:


Table 1: Beer's Law data for β -carotene standards at λ_{max}


Concentration (M)	Absorbance (λ_{max})	
1.21 × 10 ⁻⁵	1.62	
8.09 × 10 ⁻⁶	1.08	
4.04 × 10 ⁻⁶	0.44	
2.02 × 10 ⁻⁶	0.13	

y=1.49x10x-0.158

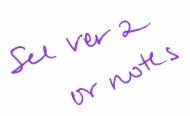
a) Determine the concentration of a solution of beta carotene that has an absorbance of 0.25.

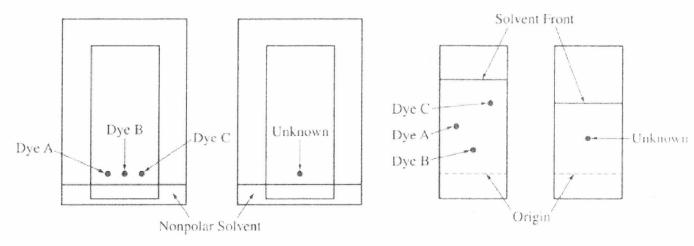
b) Determine the absorbance of a
$$5.20 \times 10^{-6} \text{M}$$
 solution of beta carotene.

2. Identify which type of separation technique would be best for the following situations.

Filtration

Distillation


Chromatography


Evaporation

- a) Mixture of ethanol(l) and water (l). distillation
- b) Mixture of lead(II) iodide (s) and water(l) Filtration
- c) Mixture of food dyes in candy coating of purple skittles. Chromatography

3. Explain the process of solution formation. You can choose to use words, pictures or a combination of the two.

Chromatography Chambers

Developed Chromatograms

a) Which Dye is least polar? Justify using interactions between the chromatography paper and the dye or the dye and the solvent.

C ble moved most so less attraction to polar paper

b) Identify the unknown dye.

A

5. When a sample of methane (CH₄) was combusted, 27.7 mL of CO₂ was collected over water at 25.0 °C and 1.00 atm. The vapor pressure of water at 25.0 °C is 23.8 torr. Determine the mass of methane that was burned.

CHy $120_2 \rightarrow 00_2 + 00_4$

$$P_{7} = 760 \text{ tw}$$
 $P_{\omega_{2}} = 760 \text{ tw} - 23.8 \text{ tw} = 736.2 \text{ tw}$
 $(736.2)(0.0277) = n(62.36)(298)$
 $(736.2)(0.0277) = n(62.36)(298)$
 $n = 0.001097 \text{ mol } \omega_{2}$

Name:	Date:	Class Po	d
-------	-------	----------	---

Unit 3: Quiz: Solutions, Chromatography & Beer's Law

AP Chemistry Version 2

2. Using the data provided below to answer the questions that follow:

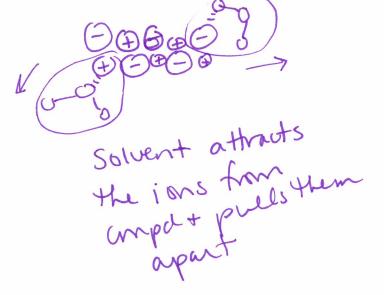
Table 1: Beer's Law data for β -carotene standards at λ_{max}

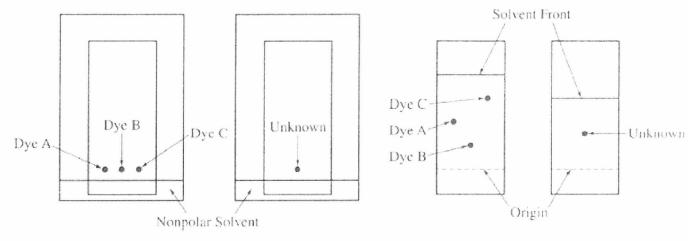
Concentration (M)	Absorbance (λ_{max})	
1.21 × 10 ⁻⁵	1.62	
8.09 × 10 ⁻⁶	1.08	
4.04 × 10 ⁻⁶	0.44	
2.02 × 10 ⁻⁶	0.13	

y=1.49x10 x-0.158

a) Determine the concentration of a solution of beta carotene that has an absorbance of 0.75.

$$0.75 = 1.49 \times 10^{5} \times -0.158$$


$$(X = 6.09 \times 10^{5} \text{ m})$$


b) Determine the absorbance of a 9.50x10-6M solution of beta carotene.

2. Identify which type of separation technique would be best for the following situations.

Filtration Distillation Chromatography Evaporation

- a) Mixture of ethanol(l) and water (l). Distillation
- b) Mixture of KNO3(s) dissolved in water (l) Exapuration
- c) Mixture of food dyes in candy coating of purple skittles. Chrom at graphy
- 3. Explain the process of solution formation. You can choose to use words, pictures or a combination of the two.

Chromatography Chambers

Developed Chromatograms

c) Which Dye is most polar? Justify using interactions between the chromatography paper and the dye or the dye and the solvent.

B-more to the paper

d) Identify the unknown dye.

A

5. When a sample of methane (CH₄) was combusted, 57.7 mL of CO₂ was collected over water at 25.0 °C and 1.00 atm. The vapor pressure of water at 25.0 °C is 23.8 torr. Determine the mass of methane that was burned. $CH_4 + 2O_2 \implies \omega_2 + 2H_2 O$

PT = 760-23.8 = 736.2 tom

(734.2)(0.0577) = n(6234)(298)N = 0.00229 mul CO₂

0.0229mol (02 | mol (Hy | 14.0429 (Hy = 0.3679) (Hy